10

5

10

5

Mid-term Exam			
Time:	10:00-13:00, March 10, 2022.	Course name:	Algebra II
Degree:	MMath.	Year:	1 st Year, 2 nd Semester; 2021–2022.
Course instructor:	Ramdin Mawia.	Total Marks:	30.

Attempt four of the following problems, including problems nº 2 & nº 4.

GROUP THEORY & FIELD THEORY

- 1. Describe all groups of order 2023 (up to isomorphism).
- 2. When do we say that a group G is solvable? Show that any group of order p^3q^n is solvable, where p < q are odd primes with $q \neq 1 + p + p^2$ and n is any positive integer. ¹
- 3. What do we mean by an *extension* of a group G by a group F? When do we say that the extension is *split*? Show that any *split* extension of G by F is a semidirect product of F by G.
- 4. When do we say that a field extension is *normal*? Let K/k be an algebraic extension. Suppose every $\alpha \in K$ is contained in a normal subextension N (i.e., $k \subset N \subset K$ with N/k normal), then show that K/k is normal.
- 5. Decide whether the following statements are true or false, with brief but complete justifications (counterexamples, proofs etc.) (any five):
 - (a) If N is a normal subgroup of G, then G is always isomorphic to $N \times G/N$.
 - (b) If N is a normal subgroup of G, then G always has a subgroup isomorphic to G/N.
 - (c) If K/k is a field extension of degree 3, then it is a normal extension.
 - (d) If $k \subset F \subset K$ is a tower of fields such that F/k, K/F are both algebraic, then K/k is also algebraic.
 - (e) If K and L are normal extensions of k, contained in the same extension E of k (i.e., $k \subset K, L \subset E$), then KL is normal over both K and k.
 - (f) Let K/k be an extension of degree m and $f(X) \in k[X]$ be an irreducible polynomial of degree coprime to m, then K is not the splitting field of f(X).
 - (g) The splitting field of $X^3 + X^2 + X + 1 \in \mathbb{Q}[X]$ is of degree 3 over \mathbb{Q} .
 - (h) Given a group G, the subgroup Inn(G) of Aut(G) consisting of inner automorphisms, is normal in Aut(G).
 - (i) If $G_1, ..., G_n$ are solvable, so is their direct product $G_1 \times \cdots \times G_n$.
 - (j) If $1 \to F \to E \to G \to 1$ is a short exact sequence of groups with F and G abelian, then E is necessarily abelian.

¹It remains solvable even when $q = 1 + p + p^2$, but you don't have to prove this.