Time:	10:00-13:00, March 10, 2022.	Course name: Algebra II Degree: MMath.	Year:	$1^{\text {st }}$ Year, $2^{\text {nd }}$ Semester; 2021-2022.
Course instructor:	Ramdin Mawia.	Total Marks:	30.	

Attempt four of the following problems, including problems $n^{o} 2 \& n^{o} 4$.

Group Theory \& Field Theory

1. Describe all groups of order 2023 (up to isomorphism).
2. When do we say that a group G is solvable? Show that any group of order $p^{3} q^{n}$ is solvable, where $p<q$ are odd primes with $q \neq 1+p+p^{2}$ and n is any positive integer. ${ }^{1}$
3. What do we mean by an extension of a group G by a group F ? When do we say that the extension is split? Show that any split extension of G by F is a semidirect product of F by G.
4. When do we say that a field extension is normal? Let K / k be an algebraic extension. Suppose every $\alpha \in K$ is contained in a normal subextension N (i.e., $k \subset N \subset K$ with N / k normal), then show that K / k is normal.
5. Decide whether the following statements are true or false, with brief but complete justifications (counterexamples, proofs etc.) (any five):
(a) If N is a normal subgroup of G, then G is always isomorphic to $N \times G / N$.
(b) If N is a normal subgroup of G, then G always has a subgroup isomorphic to G / N.
(c) If K / k is a field extension of degree 3 , then it is a normal extension.
(d) If $k \subset F \subset K$ is a tower of fields such that $F / k, K / F$ are both algebraic, then K / k is also algebraic.
(e) If K and L are normal extensions of k, contained in the same extension E of k (i.e., $k \subset K, L \subset E$), then $K L$ is normal over both K and k.
(f) Let K / k be an extension of degree m and $f(X) \in k[X]$ be an irreducible polynomial of degree coprime to m, then K is not the splitting field of $f(X)$.
(g) The splitting field of $X^{3}+X^{2}+X+1 \in \mathbb{Q}[X]$ is of degree 3 over \mathbb{Q}.
(h) Given a group G, the subgroup $\operatorname{Inn}(G)$ of $\operatorname{Aut}(G)$ consisting of inner automorphisms, is normal in $\operatorname{Aut}(G)$.
(i) If G_{1}, \ldots, G_{n} are solvable, so is their direct product $G_{1} \times \cdots \times G_{n}$.
(j) If $1 \rightarrow F \rightarrow E \rightarrow G \rightarrow 1$ is a short exact sequence of groups with F and G abelian, then E is necessarily abelian.

[^0]
[^0]: ${ }^{1}$ It remains solvable even when $q=1+p+p^{2}$, but you don't have to prove this.

